If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-700=0
a = 1; b = 4; c = -700;
Δ = b2-4ac
Δ = 42-4·1·(-700)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16\sqrt{11}}{2*1}=\frac{-4-16\sqrt{11}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16\sqrt{11}}{2*1}=\frac{-4+16\sqrt{11}}{2} $
| u=8-5 | | u=8−5 | | q=9+1 | | z=8−5 | | v=6+2 | | 2(3x+3)=3(2x) | | 10+-5=p | | 3+1=s | | 756=14(q+10) | | 8(5x−3)−11(3x+7)=102 | | 7/3x=36/46 | | x-(0.5x+105)=90 | | h+357/26=20 | | 13w-77=716 | | 17q+24=619 | | w/15+280=302 | | 27t+34=952 | | 8=4x+1/2x | | 4x+5/18=882 | | h+485÷30=27 | | 7/3x+7x+7-x+3=17+4x-13 | | 8/3x+4=12 | | 3r+28=-5(r-4) | | 120+4r=904 | | 3r+38=-5(r-4) | | -3r+38=-5(r/4) | | s/12-9=10 | | 1=z/9-3 | | -3r+28=-6(r-4) | | 15x-6=5x-24 | | (x-2)/(x-7)=5/10 | | 3x+6=4x÷6 |